Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2315541121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598341

RESUMO

Ferroptosis is an iron-dependent type of regulated cell death resulting from extensive lipid peroxidation and plays a critical role in various physiological and pathological processes. However, the regulatory mechanisms for ferroptosis sensitivity remain incompletely understood. Here, we report that homozygous deletion of Usp8 (ubiquitin-specific protease 8) in intestinal epithelial cells (IECs) leads to architectural changes in the colonic epithelium and shortens mouse lifespan accompanied by increased IEC death and signs of lipid peroxidation. However, mice with heterozygous deletion of Usp8 in IECs display normal phenotype and become resistant to azoxymethane/dextran sodium sulfate-induced colorectal tumorigenesis. Mechanistically, USP8 interacts with and deubiquitinates glutathione peroxidase 4 (GPX4), leading to GPX4 stabilization. Thus, USP8 inhibition destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro. Notably, USP8 inhibition in combination with ferroptosis inducers retards tumor growth and enhances CD8+ T cell infiltration, which potentiates tumor response to anti-PD-1 immunotherapy in vivo. These findings uncover that USP8 counteracts ferroptosis by stabilizing GPX4 and highlight targeting USP8 as a potential therapeutic strategy to boost ferroptosis for enhancing cancer immunotherapy.


Assuntos
Ferroptose , Neoplasias , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferroptose/genética , Homozigoto , Deleção de Sequência , Peroxidação de Lipídeos , Homeostase , Neoplasias/genética , Neoplasias/terapia , Imunoterapia
2.
Genome Biol ; 25(1): 63, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439049

RESUMO

BACKGROUND: Centromeres are critical for maintaining genomic stability in eukaryotes, and their turnover shapes genome architectures and drives karyotype evolution. However, the co-evolution of centromeres from different species in allopolyploids over millions of years remains largely unknown. RESULTS: Here, we generate three near-complete genome assemblies, a tetraploid Brachypodium hybridum and its two diploid ancestors, Brachypodium distachyon and Brachypodium stacei. We detect high degrees of sequence, structural, and epigenetic variations of centromeres at base-pair resolution between closely related Brachypodium genomes, indicating the appearance and accumulation of species-specific centromere repeats from a common origin during evolution. We also find that centromere homogenization is accompanied by local satellite repeats bursting and retrotransposon purging, and the frequency of retrotransposon invasions drives the degree of interspecies centromere diversification. We further investigate the dynamics of centromeres during alloploidization process, and find that dramatic genetics and epigenetics architecture variations are associated with the turnover of centromeres between homologous chromosomal pairs from diploid to tetraploid. Additionally, our pangenomes analysis reveals the ongoing variations of satellite repeats and stable evolutionary homeostasis within centromeres among individuals of each Brachypodium genome with different polyploidy levels. CONCLUSIONS: Our results provide unprecedented information on the genomic, epigenomic, and functional diversity of highly repetitive DNA between closely related species and their allopolyploid genomes at both coarse and fine scale.


Assuntos
Brachypodium , Diploide , Humanos , Tetraploidia , Brachypodium/genética , Retroelementos , Centrômero/genética
3.
Mol Cell ; 84(6): 1120-1138.e8, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38377992

RESUMO

UFMylation is an emerging ubiquitin-like post-translational modification that regulates various biological processes. Dysregulation of the UFMylation pathway leads to human diseases, including cancers. However, the physiological role of UFMylation in T cells remains unclear. Here, we report that mice with conditional knockout (cKO) Ufl1, a UFMylation E3 ligase, in T cells exhibit effective tumor control. Single-cell RNA sequencing analysis shows that tumor-infiltrating cytotoxic CD8+ T cells are increased in Ufl1 cKO mice. Mechanistically, UFL1 promotes PD-1 UFMylation to antagonize PD-1 ubiquitination and degradation. Furthermore, AMPK phosphorylates UFL1 at Thr536, disrupting PD-1 UFMylation to trigger its degradation. Of note, UFL1 ablation in T cells reduces PD-1 UFMylation, subsequently destabilizing PD-1 and enhancing CD8+ T cell activation. Thus, Ufl1 cKO mice bearing tumors have a better response to anti-CTLA-4 immunotherapy. Collectively, our findings uncover a crucial role of UFMylation in T cells and highlight UFL1 as a potential target for cancer treatment.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
Sci Transl Med ; 15(725): eadh7668, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38055802

RESUMO

Targeting angiotensin-converting enzyme 2 (ACE2) represents a promising and effective approach to combat not only the COVID-19 pandemic but also potential future pandemics arising from coronaviruses that depend on ACE2 for infection. Here, we report ubiquitin specific peptidase 2 (USP2) as a host-directed antiviral target; we further describe the development of MS102, an orally available USP2 inhibitor with viable antiviral activity against ACE2-dependent coronaviruses. Mechanistically, USP2 serves as a physiological deubiquitinase of ACE2, and targeted inhibition with specific small-molecule inhibitor ML364 leads to a marked and reversible reduction in ACE2 protein abundance, thereby blocking various ACE2-dependent coronaviruses tested. Using human ACE2 transgenic mouse models, we further demonstrate that ML364 efficiently controls disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as evidenced by reduced viral loads and ameliorated lung inflammation. Furthermore, we improved the in vivo performance of ML364 in terms of both pharmacokinetics and antiviral activity. The resulting lead compound, MS102, holds promise as an oral therapeutic option for treating infections with coronaviruses that are reliant on ACE2.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos Transgênicos , Pandemias , Peptidil Dipeptidase A/metabolismo , Ubiquitina Tiolesterase
5.
Chromosome Res ; 32(1): 1, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38108925

RESUMO

Polyploidization is a process which is related to species hybridization and whole genome duplication. It is widespread among angiosperm evolution and is essential for speciation and diversification. Allopolyploidization is mainly derived from interspecific hybridization and is believed to pose chromosome imbalances and genome instability caused by meiotic irregularity. However, the self-compatible allopolyploid in wild nature is cytogenetically and genetically stable. Whether this stabilization form was achieved in initial generation or a consequence of long term of evolution was largely unknown. Here, we synthesized a series of nascent allotetraploid wheat derived from three diploid genomes of A, S*, and D. The chromosome numbers of the majority of the progeny derived from these newly formed allotetraploid wheat plants were found to be relatively consistent, with each genome containing 14 chromosomes. In meiosis, bivalent was the majority of the chromosome configuration in metaphase I which supports the stable chromosome number inheritance in the nascent allotetraploid. These findings suggest that diploidization occurred in the newly formed synthetic allotetraploid wheat. However, we still detected aneuploids in a proportion of newly formed allotetraploid wheat, and meiosis of these materials present more irregular chromosome behavior than the euploid. We found that centromere pairing and centromere clustering in meiosis was affected in the aneuploids, which suggest that aneuploidy may trigger the irregular interactions of centromere in early meiosis which may take participate in promoting meiosis stabilization in newly formed allotetraploid wheat.


Assuntos
Diploide , Triticum , Triticum/genética , Poaceae , Meiose/genética , Aneuploidia
6.
Cell Chem Biol ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37751743

RESUMO

The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.

7.
Nat Commun ; 14(1): 2859, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208329

RESUMO

The programmed cell death protein 1 (PD-1) is an inhibitory receptor on T cells and plays an important role in promoting cancer immune evasion. While ubiquitin E3 ligases regulating PD-1 stability have been reported, deubiquitinases governing PD-1 homeostasis to modulate tumor immunotherapy remain unknown. Here, we identify the ubiquitin-specific protease 5 (USP5) as a bona fide deubiquitinase for PD-1. Mechanistically, USP5 interacts with PD-1, leading to deubiquitination and stabilization of PD-1. Moreover, extracellular signal-regulated kinase (ERK) phosphorylates PD-1 at Thr234 and promotes PD-1 interaction with USP5. Conditional knockout of Usp5 in T cells increases the production of effector cytokines and retards tumor growth in mice. USP5 inhibition in combination with Trametinib or anti-CTLA-4 has an additive effect on suppressing tumor growth in mice. Together, this study describes a molecular mechanism of ERK/USP5-mediated regulation of PD-1 and identifies potential combinatorial therapeutic strategies for enhancing anti-tumor efficacy.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Homeostase , Imunoterapia
8.
Cell Mol Gastroenterol Hepatol ; 15(5): 1085-1104, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36706917

RESUMO

BACKGROUND & AIMS: Hepatic immune system disorder plays a critical role in the pathogenesis of acute liver injury. The intrinsic signaling mechanisms responsible for dampening excessive activation of liver macrophages are not completely understood. The Notch and Hippo-YAP signaling pathways have been implicated in immune homeostasis. In this study, we investigated the interactive cell signaling networks of Notch1/YAP pathway during acute liver injury. METHODS: Myeloid-specific Notch1 knockout (Notch1M-KO) mice and the floxed Notch1 (Notch1FL/FL) mice were subjected to lipopolysaccharide/D-galactosamine toxicity. Some mice were injected via the tail vein with bone marrow-derived macrophages transfected with lentivirus-expressing YAP. Some mice were injected with YAP siRNA using an in vivo mannose-mediated delivery system. RESULTS: We found that the activated Notch1 and YAP signaling in liver macrophages were closely related to lipopolysaccharide/D-galactosamine-induced acute liver injury. Macrophage/neutrophil infiltration, proinflammatory mediators, and hepatocellular apoptosis were markedly ameliorated in Notch1M-KO mice. Importantly, myeloid Notch1 deficiency depressed YAP signaling and facilitated M2 macrophage polarization in the injured liver. Furthermore, YAP overexpression in Notch1M-KO livers exacerbated liver damage and shifted macrophage polarization toward the M1 phenotype. Mechanistically, macrophage Notch1 signaling could transcriptionally activate YAP gene expression. Reciprocally, YAP transcriptionally upregulated the Notch ligand Jagged1 gene expression and was essential for Notch1-mediated macrophage polarization. Finally, dual inhibition of Notch1 and YAP in macrophages further promoted M2 polarization and alleviated liver damage. CONCLUSIONS: Our findings underscore a novel molecular insight into the Notch1-YAP circuit for controlling macrophage polarization in acute liver injury, raising the possibility of targeting macrophage Notch1-YAP circuit as an effective strategy for liver inflammation-related diseases.


Assuntos
Lipopolissacarídeos , Fígado , Animais , Camundongos , Galactosamina/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Transdução de Sinais
9.
Nat Commun ; 13(1): 1700, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361799

RESUMO

Anti-PD-1/PD-L1 immunotherapy has achieved impressive therapeutic outcomes in patients with multiple cancer types. However, the underlined molecular mechanism(s) for moderate response rate (15-25%) or resistance to PD-1/PD-L1 blockade remains not completely understood. Here, we report that inhibiting the deubiquitinase, USP8, significantly enhances the efficacy of anti-PD-1/PD-L1 immunotherapy through reshaping an inflamed tumor microenvironment (TME). Mechanistically, USP8 inhibition increases PD-L1 protein abundance through elevating the TRAF6-mediated K63-linked ubiquitination of PD-L1 to antagonize K48-linked ubiquitination and degradation of PD-L1. In addition, USP8 inhibition also triggers innate immune response and MHC-I expression largely through activating the NF-κB signaling. Based on these mechanisms, USP8 inhibitor combination with PD-1/PD-L1 blockade significantly activates the infiltrated CD8+ T cells to suppress tumor growth and improves the survival benefit in several murine tumor models. Thus, our study reveals a potential combined therapeutic strategy to utilize a USP8 inhibitor and PD-1/PD-L1 blockade for enhancing anti-tumor efficacy.


Assuntos
Endopeptidases , Complexos Endossomais de Distribuição Requeridos para Transporte , Imunoterapia , Neoplasias , Microambiente Tumoral , Ubiquitina Tiolesterase , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética
10.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33990465

RESUMO

The Knl1-Mis12-Ndc80 (KMN) network is an essential component of the kinetochore-microtubule attachment interface, which is required for genomic stability in eukaryotes. However, little is known about plant Knl1 proteins because of their complex evolutionary history. Here, we cloned the Knl1 homolog from maize (Zea mays) and confirmed it as a constitutive central kinetochore component. Functional assays demonstrated their conserved role in chromosomal congression and segregation during nuclear division, thus causing defective cell division during kernel development when Knl1 transcript was depleted. A 145 aa region in the middle of maize Knl1, that did not involve the MELT repeats, was associated with the interaction of spindle assembly checkpoint (SAC) components Bub1/Mad3 family proteins 1 and 2 (Bmf1/2) but not with the Bmf3 protein. They may form a helical conformation with a hydrophobic interface with the TPR domain of Bmf1/2, which is similar to that of vertebrates. However, this region detected in monocots shows extensive divergence in eudicots, suggesting that distinct modes of the SAC to kinetochore connection are present within plant lineages. These findings elucidate the conserved role of the KMN network in cell division and a striking dynamic of evolutionary patterns in the SAC signaling and kinetochore network.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Plantas/genética , Transdução de Sinais/genética , Fuso Acromático/metabolismo , Zea mays/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Segregação de Cromossomos/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Cinetocoros/metabolismo , Proteínas Associadas aos Microtúbulos/classificação , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , RNA-Seq/métodos , Sementes/genética , Sementes/metabolismo , Homologia de Sequência de Aminoácidos , Zea mays/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 318(1): G162-G173, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604033

RESUMO

Hepatitis B virus (HBV) exploits multiple strategies to evade host immune surveillance. Programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) signaling plays a critical role in regulating T cell homeostasis. However, it remains largely unknown as to how HBV infection elevates PD-L1 expression in hepatocytes. A mouse model of HBV infection was established by hydrodynamic injection with a vector containing 1.3-fold overlength HBV genome (pHBV1.3) via the tail vein. Coculture experiments with HBV-expressing hepatoma cells and Jurkat T cells were established in vitro. We observed significant decrease in the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and increase in ß-catenin/PD-L1 expression in liver tissues from patients with chronic hepatitis B and mice subjected to pHBV1.3 hydrodynamic injection. Mechanistically, decrease in PTEN enhanced ß-catenin/c-Myc signaling and PD-L1 expression in HBV-expressing hepatoma cells, which in turn augmented PD-1 expression, lowered IL-2 secretion, and induced T cell apoptosis. However, ß-catenin disruption inhibited PTEN-mediated PD-L1 expression, which was accompanied by decreased PD-1 expression, and increased IL-2 production in T cells. Luciferase reporter assays revealed that c-Myc stimulated transcriptional activity of PD-L1. In addition, HBV X protein (HBx) and HBV polymerase (HBp) contributed to PTEN downregulation and ß-catenin/PD-L1 upregulation. Strikingly, PTEN overexpression in hepatocytes inhibited ß-catenin/PD-L1 signaling and promoted HBV clearance in vivo. Our findings suggest that HBV-triggered PTEN/ß-catenin/c-Myc signaling via HBx and HBp enhances PD-L1 expression, leading to inhibition of T cell response, and promotes HBV immune evasion.NEW & NOTEWORTHY This study demonstrates that during HBV infection, HBV can increase PD-L1 expression via PTEN/ß-catenin/c-Myc signaling pathway, which in turn inhibits T cell response and ultimately promotes HBV immune evasion. Targeting this signaling pathway is a potential strategy for immunotherapy of chronic hepatitis B.


Assuntos
Antígeno B7-H1/metabolismo , Vírus da Hepatite B/metabolismo , Hepatite B Crônica/metabolismo , Hepatócitos/enzimologia , Evasão da Resposta Imune , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linfócitos T/enzimologia , beta Catenina/metabolismo , Animais , Técnicas de Cocultura , Modelos Animais de Doenças , Produtos do Gene pol/genética , Produtos do Gene pol/metabolismo , Células Hep G2 , Vírus da Hepatite B/genética , Vírus da Hepatite B/imunologia , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Células Jurkat , Ativação Linfocitária , Masculino , Camundongos Endogâmicos BALB C , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/virologia , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias
12.
Hepatology ; 70(5): 1714-1731, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31063235

RESUMO

The Hippo pathway, an evolutionarily conserved protein kinase cascade, tightly regulates cell growth and survival. Activation of yes-associated protein (YAP), a downstream effector of the Hippo pathway, has been shown to modulate tissue inflammation. However, it remains unknown as to whether and how the Hippo-YAP signaling may control NLR family pyrin domain containing 3 (NLRP3) activation in mesenchymal stem cell (MSC)-mediated immune regulation during liver inflammation. In a mouse model of ischemia/reperfusion (IR)-induced liver sterile inflammatory injury, we found that adoptive transfer of MSCs reduced hepatocellular damage, shifted macrophage polarization from M1 to M2 phenotype, and diminished inflammatory mediators. MSC treatment reduced mammalian Ste20-like kinase 1/2 and large tumor suppressor 1 phosphorylation but augmented YAP and ß-catenin expression with increased prostaglandin E2 production in ischemic livers. However, disruption of myeloid YAP or ß-catenin in MSC-transferred mice exacerbated IR-triggered liver inflammation, enhanced NLRP3/caspase-1 activity, and reduced M2 macrophage phenotype. Using MSC/macrophage coculture system, we found that MSCs increased macrophage YAP and ß-catenin nuclear translocation. Importantly, YAP and ß-catenin colocalize in the nucleus while YAP interacts with ß-catenin and regulates its target gene X-box binding protein 1 (XBP1), leading to reduced NLRP3/caspase-1 activity after coculture. Moreover, macrophage YAP or ß-catenin deficiency augmented XBP1/NLRP3 while XBP1 deletion diminished NLRP3/caspase-1 activity. Increasing NLRP3 expression reduced M2 macrophage arginase1 but augmented M1 macrophage inducible nitric oxide synthase expression accompanied by increased interleukin-1ß release. Conclusion: MSCs promote macrophage Hippo pathway, which in turn controls NLRP3 activation through a direct interaction between YAP and ß-catenin and regulates XBP1-mediated NLRP3 activation, leading to reprograming macrophage polarization toward an anti-inflammatory M2 phenotype. Moreover, YAP functions as a transcriptional coactivator of ß-catenin in MSC-mediated immune regulation. Our findings suggest a therapeutic target in MSC-mediated immunotherapy of liver sterile inflammatory injury.


Assuntos
Fígado/irrigação sanguínea , Células-Tronco Mesenquimais/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Traumatismo por Reperfusão/imunologia , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Proteínas de Ciclo Celular/fisiologia , Células Cultivadas , Macrófagos/fisiologia , Camundongos , Proteínas de Sinalização YAP
13.
Virol Sin ; 33(2): 162-172, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29594956

RESUMO

Hepatitis B virus (HBV) infection is one of the major problems that threatens global health. There have been many studies on HBV, but the relationship between HBV and host factors is largely unexplored and more studies are needed to clarify these interactions. Filamin B is an actin-binding protein that acts as a cytoskeleton protein, and it is involved in cell development and several signaling pathways. In this study, we showed that filamin B interacted with HBV core protein, and the interaction promoted HBV replication. The interaction between filamin B and core protein was observed in HEK 293T, Huh7 and HepG2 cell lines by co-immunoprecipitation and co-localization immnofluoresence. Overexpression of filamin B increased the levels of HBV total RNAs and pre-genome RNA (pgRNA), and improved the secretion level of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg). In contrast, filamin B knockdown inhibited HBV replication, decreased the level of HBV total RNAs and pgRNA, and reduced the secretion level of HBsAg and HBeAg. In addition, we found that filamin B and core protein may interact with each other via four blocks of argentine residues at the C-terminus of core protein. In conclusion, we identify filamin B as a novel host factor that can interact with core protein to promote HBV replication in hepatocytes. Our study provides new insights into the relationship between HBV and host factors and may provide new strategies for the treatment of HBV infection.


Assuntos
Filaminas/metabolismo , Antígenos do Núcleo do Vírus da Hepatite B/metabolismo , Vírus da Hepatite B/fisiologia , Interações Hospedeiro-Patógeno , Replicação Viral , Linhagem Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/metabolismo , Hepatócitos/virologia , Humanos , Mapeamento de Interação de Proteínas , RNA Viral/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...